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Today s Hottest Microchip 
 Intel s Itanium 2 

The numbers ! 
–! 0.5 billion transistors in 

120nm CMOS 
–! 1.6GHz clock, 64-bit 

instruction, 9MB L3 cache, 
6.4GB/s I/O 

–! 2553 SPECfp_base2000 
(30% faster than 2.8GHz P4) 

–! 130 Watts 

Source: IEEE ISSCC 2002 

! and what they mean 
Faster/cooler: 

•! Scientific computing 
•! Database search 
•! Web surfing 
•! Video games 

What about intelligence? 
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Chips and Brains 

•! Itanium: 
–! 3 109 floating op/s 

•! 5 108 transistors 
•! 2 109 Hz clock 

–! 1010 Hz memory I/O 
•! 128-b data bus @ 400MHz 

–! 130 Watts 

•! Human brain: 
–! 1015 synaptic op/s 

•! 1015 synapses 
•! 1 Hz average firing rate 

–! 1010 Hz sensory/motor I/O 
•! 108 nerve fibers 

–! 25 Watts 

•! Silicon technology is approaching the raw computational 
power and bandwidth of the human brain. 

•! However, to emulate brain intelligence with chips 
requires a radical paradigm shift in computation: 

–! Distributed representation in massively parallel architecture 
•! Local adaptation and memory 
•! Sensor and motor interfaces 

–! Physical foundations of computing 
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Physics of Computation 
 CMOS Silicon Technology 

 Voltage-dependent n-channel 
–! Electron transport between source and drain 
–! Gate controls energy barrier for electrons 

across the channel 
–! Boltzmann distribution of electron energy 

produces exponential increase in channel 
conductance with gate voltage 

p- Si substrate 
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poly Si 
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n-Channel 

Cross-section of nMOS transistor in 
0.18µm CMOS process (Intel, 2002) 
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Physics of Computation 
 CMOS Silicon Technology 

 Voltage-dependent p-channel 
–! Hole transport between source and drain 
–! Gate controls energy barrier for holes 

across the channel 
–! Boltzmann distribution of hole energy 

produces exponential decrease in channel 
conductance with gate voltage 

poly Si 
Source 

SiO2 Gate 
Drain 

E
ne

rg
y 

G
at

e 
vo

lta
ge

 
Source 

Gate 

Drain 

pMOS transistor 
circuit symbol 

p- Si substrate 

p-Channel p+ p+ 
n- well 



Gert Cauwenberghs gert@ucsd.edu Silicon and Biological Adaptive Neural Circuits 

Physics of Neural Computation 
 Silicon and Lipid Membranes 

Mead, 1989 

 Voltage-dependent p-channel 
–! Hole transport between source and drain 
–! Gate controls energy barrier for holes 

across the channel 
–! Boltzmann distribution of hole energy 

produces exponential decrease in channel 
conductance with gate voltage 
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Source 

SiO2 Gate 
Drain 

E
ne

rg
y 

G
at

e 
vo

lta
ge

 p- Si substrate 

p-Channel p+ p+ 
n- well 

Squid giant axon (Hodgkin and Huxley, 1952) 

 Voltage-dependent conductance 
–! K+/Na+ transport across lipid bilayer 
–! Membrane voltage controls energy barrier 

for opening of ion-selective channels 
–! Boltzmann distribution of channel energy 

produces exponential increase in K+/Na+ 
conductance with membrane voltage 
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Physics of Neural Computation 
 Silicon and Biochemical Synapses 

Mead 1989 

 Voltage-dependent p-channel 
–! Hole transport between source and drain 
–! Gate controls energy barrier for holes 

across the channel 
–! Boltzmann distribution of hole energy 

produces exponential decrease in channel 
conductance with gate voltage 
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(from Shepherd 1979) 

 Voltage-dependent quantal release 
–! K+/Na+ through postsynaptic membrane 
–! Presynaptic membrane voltage controls 

energy barrier for neurotransmitter release 
–! Boltzmann distribution in quantal release 

energy produces exponential dependence 
of postsynaptic K+/Na+ conductance  

Presynaptic membrane potential 
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Why Develop Neural  Silicon Chips? 
Biology Motives: 

–! In silico emulation of neural and sensory-motor systems 
•! Real-time computational power 
•! Accounts for noise and imprecision in neural elements 

–! Analysis by synthesis 
•! Emulating form and structure of neural systems provides better 

understanding, accounting for physical and architectural constraints 
–! Interfacing silicon with neurons and synapses in vivo 

•! Allows to observe and control neural and synaptic activity 
Engineering Motives: 

–! Efficiency of implementation 
•! Lower power, smaller size 

–! Real-world interface 
•! Integrated sensors and actuators 
•! Analog, continuous-time dynamics 
•! Intelligent brain-machine interfaces! 
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Neuromorphic Systems Design Flow 

Neural Model 
 
 
 
 
 
 

Microchip(s) 
 
 
 
 

Neuromorphic System 

Circuit Design and 
Simulation 

 
 
 

Microfabrication 
 
 
 
 
 

System Integration 

Chip Layout 
 
 
 

 
Chip Testing 

http://www.mosis.org 
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Silicon Model of Visual Cortical Processing 
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Single-chip focal-plane implementation 
(Cauwenberghs and Waskiewicz, 1999) 
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NeuroDyn: Biophysical Neurodynamics in Analog VLSI 
Yu and Cauwenberghs 2009 

The NeuroDyn Board consists of 4 neurons fully connected through 12 
synapses.  All parameters are individually programmable and have 
biophysically-based parameters governing the conductances, reversal 
potentials, and voltage-dependance of the channel kinetics. 

Programmable Parameters: 384 total 

V1 V2 

V3 V4 

s1,2 

s2,1 

s3,4 

s4,3 

s4,2 s2,4 s3,1 s1,3 

s1,4 

s3,2 

s2,3 

s4,1 

Neurons Vi 
!  (V) 

*All rates !, " are 7-point sigmoidal spline regression functions 
     !. (Vk), ".(Vk),     k = 1,!7 

ni mi hi 

!  (Vpre) rij 
Synapses sij 

"  (Vpost) rij 

"  (V) ni mi hi 

g   synij 

g   Nai Ki Li 

E   synij 

E   Nai Ki Li 
4x3x7* 4x3x7* 4x3 4x3 

12x7* 12x7* 12 12 

Recorded dynamics of action potential and 
channel kinetics for one HH neuron. 
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NeuroDyn Models and Architecture 

The NeuroDyn chip emulates 
detailed neural and synaptic 
dynamics in silicon by 
implementing rate-based models 
of voltage-gated and ligand-gated 
channel kinetics. Each parameter is individually 

addressable and programmable through 
10-bit DACs.   
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NeuroDyn Synaptic Coupling 

Uncoupled Mutual inhibitory synaptic coupling 
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Generalized Map-Based Neural Dynamics 
Izhikevich 2003; Rulkov, Timofeev & Bazhenov 2004; Mihalas & Niebur 2009 

Electronic version of the figure and reproduction permissions are freely available at www.izhikevich.com 
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Generalized HH/ML Neural Dynamics 
Yu, Sejnowski, and Cauwenberghs 2010 
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NeuroDyn Tonic Spiking 
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NeuroDyn Phasic Spiking 
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NeuroDyn Tonic Bursting 
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Change Threshold Detection APS CMOS Imager 

–! Event-driven video compression 
•! Change detection and threshold encoding 

on the focal plane 
–! 6T pixel combines APS and change event 

coding  
–! 4.3mW power at 3V and 30fps 

Chi, Mallik, Clapp, Choi, Cauwenberghs and Etienne-Cummings (2007) 

90 x  90 
TD-APS 

Array 

FI
FO

 

DDS / Event Coding 

Video Out Change Events Out 

Fast Rotation Slow Rotation 
pos. 
neg. 
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Change Detection APS: Compression and Reconstruction 

Frame 0 

Frame 50 

Change Events 

Reconstructed 

Uncompressed Low 
Threshold 

High 
Threshold 
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Event-Coding Silicon Retina 

–! Models coding and communication of visual events in the 
mammalian retina and optic nerve  
•! Integrated photosensors (rods) 
•! On and off transient and sustained ganglia cell outputs 

–! Spatiotemporal compressed coding and communication in optic nerve 
–! Address-event coding of spikes 

Zaghloul and Boahen, 2006 
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Reconfigurable Synaptic Connectivity and Plasticity 
From Microchips to Large-Scale Neural Systems 

Multi-Chip 
Systems 

Address-Event 
Representation 

Neural 
Systems 

Synaptic 
Plasticity & 

Wiring 
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Address-Event Representation (AER) 
 Lazzaro et al., 1993; Mahowald, 1994; Deiss 1994; Boahen 2000 

–! AER emulates extensive connectivity between neurons by 
communicating spiking events time-multiplexed on a shared 
data bus.  

–! Spikes are represented by two values: 
•! Cell location (address) 
•! Event time (implicit) 

–! All events within !t are simultaneous  
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–! Virtual  synapses 
•! Dynamically reconfigurable 
•! Wide-ranging connectivity 
•! Rewiring and synaptic plasticity 

–! Quantal release:  R = n p q!
•! n: multiplicity   (repeat event) 
•! p: probability of release  (toss a coin) 
•! q: quantity released  (set amplitude) 

Address-Event Synaptic Connectivity 
Goldberg, Cauwenberghs and Andreou, 2000 

IFAT2 (2000) 

transceiver (IFAT) 

1 

2 

Sender 

Receiver 

(DRAM) 
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Silicon Membrane Array Transceiver 
Vogelstein, Mallik and Cauwenberghs, 2004 

–! Voltage-controlled membrane 
ion conductance 
•! Event-driven activation 
•! Dynamically reconfigurable: 

–! conductance g 
–! driving potential E 

–! Address-event encoding of 
pre-and post-synaptic action 
potentials 

60 x 40 
IFAT 
Array 

Event Arbitration 
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IFAT3 (2004) 
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Silicon Membrane Circuit 

gi(t) ion-specific membrane 
conductance 

 
Ei ion-specific driving potential 

Synapse subcircuit Action potential generation and  
AER handshaking 
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Reconfigurable Silicon Large-Scale Neural Emulator 

•! 9,600 neurons 
–! 4 silicon membrane chips (IFAT) 

•! 4 million, 8-bit virtual  synapses 
–! 128MB (32bX4M) non-volatile RAM 

•! 1 million synaptic updates per second 
–! 200MHz Spartan II Xilinx FPGA MCU  

•! Dynamically reconfigurable 
–! Rewiring and synaptic plasticity (STDP etc.) 
–! Driving potential (DAC) and conductance (IFAT) 

Sender 

Receiver 

IFAT3 

Vogelstein, Mallik and Cauwenberghs, 2007 
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Hierarchical Vision and Saliency-Based Acuity Modulation 
Vogelstein, Mallik, Culurciello, Cauwenberghs, and Etienne-Cummings, NECO 2007 

IFAT Cortical Model 
4800 silicon neurons 
4,194,304 synapses 

 

Octopus Silicon Retina 
80 x 60 pixels 

AER spiking output 

OR image Simple cell response Saliency map 
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Spike Timing-Dependent Plasticity 

Bi and Poo, 1998 
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Spike Timing-Dependent Plasticity 
 in the Address Domain 

Causal Anti-Causal 
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Spike Timing-Dependent Plasticity on the IFAT 
Vogelstein et al, NIPS*2002 
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Scaling of Task and Machine Complexity 

Achieving (or surpassing) human-level machine intelligence will 
require a convergence between: 
•! Advances in computing resources approaching connectivity and 

energy efficiency levels of computing and communication in the brain; 
•! Advances in training methods, and supporting data, to adaptively 

reduce algorithmic complexity.   

Machine Complexity 
Throughput; 

Memory; 
Power; 

Size 

Task Complexity 
Search tree depth*breadth 

[log] 

[log] 

Human brain 
1015 synOP/s; 15W 

Brute force 
Digital computer 

Humanoid 
Neuromorphic computer  
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Example: Board Games (Chess and Go) 

–! Complexity of typical strategic board games precludes exact solution 
through complete tree search for all but the simplest games (smallest boards).  
•! Chess and Go are EXPTIME-complete: perfect strategy requires search time 

exponential in board size. 
–! Humans handle game complexity by pattern recognition and sequence recall, 

rather than tree search, acquired through extensive experience. 
•! Novices routinely defeat computer Go, which fails to see  the board like humans. 
•! The need to see  board patterns calls for adaptive neuromorphic approaches. 

Machine Complexity 
Throughput; 

Memory; 
Power; 

Size 

Game Complexity 
Game tree depth*breadth 

[log] 

[log] Brute force 
Digital computer 

Humanoid 
Neuromorphic computer  

Human brain 
1015 synOP/s; 15W 

Deep Blue/ 
Deep Fritz 

10123 10360 

Chess 
(8x8) 

Go 
(19x19) 

ELO " 2,800 
(world champion) 

Kasparov 

The game of Go 
(19x19 version) 
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Scaling and Complexity Challenges 

•! Scaling the event-based neural systems to performance 
and efficiency approaching that of the human brain will 
require: 
–! Scalable advances in silicon integration and architecture 

•! Scalable, locally dense and globally sparse interconnectivity 
–! Hierarchical address-event routing 

•! High density (1012 neurons, 1015 synapses within 5L volume) 
–! Silicon nanotechnology and 3-D integration 

•! High energy efficiency (1015 synOPS/s at 15W power) 
–! Adiabatic switching in event routing and synaptic drivers 

–! Scalable models of neural computation and synaptic plasticity 
•! Convergence between cognitive and neuroscience modeling 
•! Modular, neuromorphic design methodology 
•! Data-rich, environment driven evolution of machine complexity 

EE 
NanoE 
Phys 

Neuro 
CS 

CogSci 
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3-D Integrated Silicon Neuromorphic Processor 

•! 65,000, two-compartment neurons 
–! Conductance-based integrate and fire 

array transceiver (IFAT) 
•! 65 million, 32-bit virtual  synapses 

–! Conductance-based dynamical synapses 
–! Dynamic table-look in embedded 

memory (2Gb DRAM) 
•! Locally dense, globally sparse synaptic 

interconnectivity 
–! Hierarchical address-event routing 

(HiAER) 
–! Dynamically reconfigurable 
–! Asynchronous spike event I/O interface 

Sender 

Receiver 

Park, Joshi, Yu, Maier, and Cauwenberghs, 2010 

5 
m

m
 

5 mm 

5 
m
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5 mm 

DRAM 
HiAER (Digital CMOS) 
IFAT (Analog CMOS) 

Top metal 

TSV 
Top metal 

I/O pad 

HiAER IFAT 0.13µm CMOS 0.13µm CMOS 

Hierarchical address-event routing (HiAER) 
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(a) (b) (c) 

(d) (e) (f) 

Phase Change Memory (PCM) Nanotechnology 

Intel/STmicroelectronics (Numonyx) 256Mb multi-level  phase-change memory (PCM) [Bedeschi et al, 2008].  Die 
size is 36mm2 in 90nm CMOS/Ge2Sb2Te5, and cell size is 0.097µm2.  (a) Basic storage element schematic, (b) 

active region of cell showing crystalline and amorphous GST, (c) SEM photograph of array along the wordline 
direction after GST etch, (d) I-V characteristic of storage element, in set and reset states, (e) programming 

characteristic, (f) I-V characteristic of pnp bipolar selector.  

–! Scalable to high density and energy efficiency 
•! < 100nm cell size in 32nm CMOS 
•! < pJ energy per synapse operation 
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Large-Scale Mixed-Signal Sensory Computation 

•! Massive Parallelism 
–! distributed representation 
–! local memory and adaptation 
–! analog sensory interface 
–! physical computation 
–! analog accumulation on 

single wire 
•! Inherently Scalable 

silicon area and power scale 
linearly with throughput 

•! Highly Efficient 
factor 100 to 10,000 less 

energy/operation than DSP 
•! Limited Precision 

–! analog mismatch and 
nonlineary (WYDINWYG) 

–! fix: adaptation in 
redundancy 

 

Example: VLSI Analog-to-digital vector quantizer 
(Cauwenberghs and Pedroni, 1997) 
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Silicon Learning Machines for Embedded Sensor 
Adaptive Intelligence 

ASP A/D Sensory 
Features 

Digital Analog 

Large-Margin Kernel 
Regression Class Identification 

Kerneltron: 
massively parallel 
support vector 
machine  (SVM) in 

silicon (JSSC 2007) 

MAP Forward 
Decoding Sequence Identification 

Sub-microwatt 
speaker verification 
and phoneme 
recognition  
(NIPS 2004) 

GiniSVM 
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Trainable Modular Vision Systems: The SVM Approach 
 

–! Support vector machine (SVM) 
with mathematical foundations 
in Statistical Learning Theory 
(Vapnik, 1995) 

–! The training process selects a 
small fraction of prototype 
support vectors from the data 
set, located at the margin on 
both sides of the classification 
boundary (e.g., barely faces vs. 
barely non-faces) 

Support vector machine 
(SVM) classification for 
pedestrian and face 
object detection 

Papageorgiou, Oren, Osuna and Poggio, 1998 
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Trainable Modular Vision Systems: The SVM Approach 
 

–! The number of support 
vectors, in relation to 
the number of training 
samples and the vector 
dimension, determine 
the generalization 
performance 

–! Both training and run-
time performance are 
severely limited by the 
computational 
complexity of 
evaluating kernel 
functions 

ROC curve for various 
image representations and 
dimensions 

Papageorgiou, Oren, Osuna and Poggio, 1998 
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•! 1.2 TMACS / mW 
–! adiabatic resonant clocking 

conserves charge energy 
–! energy efficiency on par with 

human brain (1015 SynOP/S 
at 15W) 

Kerneltron: Adiabatic Support Vector Machine  
Karakiewicz, Genov and Cauwenberghs , 2007 

Karakiewicz, Genov, and Cauwenberghs, VLSI 2006; CICC 2007 
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Classification results on MIT CBCL 
face detection data 

resonance 

capacitive 
load 



Gert Cauwenberghs gert@ucsd.edu Silicon and Biological Adaptive Neural Circuits 

Resonant Charge Energy Recovery 

resonance 

capacitive load 

CID 
array 

re
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na
nc

e 

(capacitive load) 
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Silicon support vector machine 
(SVM) and forward decoding 
kernel machine (FDKM) 

x s 

x 
NORMALIZATION 

# i1 s 

14 24x24 

30x24 30x24 

1 2 
24 

! j[n-1] ! i[n] 
24 

MVM MVM 

SUPPORT VECTORS 

INPUT 
f i1 (x) 

24 
FORWARD DECODING 

P i1 P i2 4 
K

E
R

N
E

L K
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24x24 

Forward decoding MAP sequence estimation Biometric verification 

840 nW 
power 

Sub-Micropower Analog VLSI Adaptive Sequence Decoding  
Chakrabartty and Cauwenberghs , 2004 

GiniSVM 

X[n] X[n-1] X[n+1] 
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Adaptive Machine Intelligence  
Training Machines towards Human Performance through Games 

Intelligent 
Machines 

Competitive Games 

Human 
Brain Human and 

Machine 
Learning 

keyboard 
mouse 
joystick 

Internet game 
moves 

game 
moves 

events 

Event Codec 
video 
audio 

VR 
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Competitive Games: Humans and Machines 

–! Learning through experience in two-player zero-sum games: 
•! Humans to humans:  Novices learn from experts to become experts. 
•! Humans to machines:  Towards human-level machine performance. 
•! Machines to machines:  Beyond human-level machine performance. 

–! Heterogeneous competitive ranking: 
•! ELO score ranks humans and machines alike. 
•! Turing test. 

H - H M - M H - M 
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Web-Based Competitive Games 
Human Players 

–! Existing, extensively developed game infrastructure 
–! Readily available, large pool of human subjects 

Human Player #1 

video 
audio 

VR 

keyboard 
mouse 
joystick 

Java 
Kernel 

Internet 

game 
moves 

Human Player #2 

keyboard 
mouse 
joystick 

Java 
Kernel 

game 
moves 

Game 
Server 

video 
audio 

VR 
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Web-Based Competitive Games 
Humans and Machines 

–! Event codec adapter and machine interface 
–! Central logging, ranking, and matchmaking at external game 

server 

Human Player 

keyboard 
mouse 
joystick 

Java 
Kernel 

Internet 

game 
moves 

Java 
Kernel 

game 
moves 

Game 
Server 

Machine 

events 

Event Codec 
video 
audio 

VR 
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Web-Based Competitive Games 
Humans Tutoring Machines 

–! Machine learns by observing actions and internal representation (EEG brain 
activity) of human expert. 

–! Neuromorphic: trained machine approaches human brain function and form. 

Human Trainer 
(Expert) 

keyboard 
mouse 
joystick 

Internet 

game 
moves 

Game 
Server 

Machine 

sensory/motor 
events 

Event Codec 

EEG array 

Tutor 

Game 
(active) 

Pupil 

Game 
(passive) 

game 
moves 
(copy) 

actions 
brain activity 

feedback/reward events 
activity map 

video 
audio 

VR 
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Inferface and Benchmark 
Infrastructure 

Extensions of Interface and Benchmark Infrastructure 
General Game Environments 

Machine 

sensory/motor 
events 

Event Codec 

sensory 
input 

motor 
output 

synaptic 
events 

Game 
Environment 

•! Game boxes 
–! Specialized computers with 

advanced graphics for games 
•! Virtual game environments 
•! Multi-player capable through 

internet 
–! Examples: 

•! Sony Playstation II 
•! Microsoft Xbox 360 
•! Nintendo Wii 

•! Robots 
–! Physical interface to sensory input 

and motor output 
•! Real-world game environments 

–! Examples: 
•! NSI Darwin 
•! K-Team Khepera III 
•! WowWee Robosapien 

http://www.wowwee.com 

Sensory/Motor 
Interface 

http://www.gearsofwar.com 
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Closing the Loop: Interactive Neural/Artificial Intelligence 

Micropower
Mixed-Signal 

VLSI 
Neuro 

Bio 

Neurosystems 
Engineering 

 
Biosensors, 

Neural 
Prostheses and 
Brain Interfaces 

 
Adaptive 
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and Pattern 
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& 

Adaptation 
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synaptic  
plasticity 

CyberGlove 

PNS 

PNS 

PNS 
PNS 

CNS 

CNS 

CNS 

adaptive  
control  

MoCap 

Computational modeling 

G. Cauwenberghs, K. Kreutz-Delgado, T.P. Jung, S. Makeig, H. Poizner, T. Sejnowski,  
F. Broccard, D. Peterson, M. Arnold, A. Akinin, C. Stevenson, J. Menon 

Distributed Brain Dynamics of Human Motor Control 
NSF EFRI 2012 – Mind, Machines and Motor Control (M3C) 

IFAT

IFAT IFAT

IFAT

SRT
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SRT

SRT SRT

SRT

SRT

SRT

SRT SRT

Level 1 
HiAER

Level 1 
HiAER
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Level 1 
HiAER

Level 2 
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Connector

JTAG JTAG

JTAG

JTAG

EEG brain dynamics and Parkinson s 

Force feedback 

Neuromorphic emulation of brain 
dynamics in motor control 

MoBI 
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Brain Computer Interfaces and Motor Control 

•! The brain s motor commands ! 
–! Parietal/frontal cortex 

•! Implanted electrodes 
•! Electroencephalogram (EEG) 

–! Cortical signals, noninvasive 
–! Low bandwidth (seconds) 

–! Nerve signals 
•! Spinal cord electrodes 
•! Electromyogram (EMG) 

–! Muscle signals, noninvasive 
–! Higher bandwidth (milliseconds) 

! translated into motor actions 
–! Machine learning/signal processing 
–! Neuromorphic approaches 

•! Central pattern generators (CPGs) 

Nicolelis, Nature Rev. Neuroscience 4, 417, 2003 



Gert Cauwenberghs gert@ucsd.edu Silicon and Biological Adaptive Neural Circuits 

Wireless Non-Invasive, Orthotic Brain Machine 
Interfaces 

–! Mind-machine interfaces for augmented human-computer 
interaction  

–! Body sensor networks for mobile health monitoring and 
augmented situation awareness 

Calit2 StarCAVE immersive 3-D virtual 
reality environment Yu Mike Chi, 2010 TATRC Grand Challenge 
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10Hz alpha 

Eye blinks Eyes Closed 

Wireless EEG/ICA Neurotechnology 

RF Wireless 
Link 

EEG/ICA 
Silicon Die 

Dry 
Electrode 

Flex 
Printed 
Circuit 

with Tom Sullivan, Steve Deiss, Tzyy-Ping Jung and Scott Makeig 

•! Integrated EEG/ICA wireless EEG recording system 
–! Scalable towards 1000+ channels 
–! Dry contact electrodes 
–! Wireless, lightweight 
–! Integrated, distributed independent component analysis (ICA) 
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Wireless Non-Contact Biopotential Sensors 
Mike Yu Chi and Gert Cauwenberghs, 2010 

EEG alpha and eye blink activity 
recorded on the occipital lobe over 

haired skull 
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Non-Contact EEG Recording over Haired Scalp 

•! Easy access to hair-covered areas of the 
head without gels or slap-contact 

•! EEG data available only from the posterior 
–! P300 (Brain-computer control, memory 

recognition) 
–! SSVP (Brain-computer control) 

Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010 
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Subject s eyes closed showing alpha wave activity!
Full bandwidth, unfiltered, signal show (.5-100Hz)!

Non-Contact vs. Ag/AgCl Comparison 
Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010 
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EEG/ECoG/EMG Amplification, Filtering and Quantization 
Mollazadeh, Murari, Cauwenberghs and Thakor (2009) 

–! Low noise 
•! 21nV/!Hz input-referred noise 
•! 2.0µVrms over 0.2Hz-8.2kHz 

–! Low power 
•! 100µW per channel at 3.3V 

–! Reconfigurable 
•! 0.2-94Hz highpass, analog adjustable 
•! 140Hz-8.2kHz lowpass, analog 

adjustable 
•! 34dB-94dB gain, digitally selectable 

–! High density 
•! 16 channels 
•! 3.3mm X 3.3mm in 0.5µm 2P3M CMOS 
•! 0.33 sq. mm per channel 
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Distributed Sensing of Dopamine Activity 
Murari, Stanacevic, Cauwenberghs, and Thakor (2005) 

Electrochemical detection 
Carbon-probe redox current 

In vitro  Dopamine monitoring by the chip using micro-
fabricated electrode array as working electrode.  

Carbon electrodes for Dopamine sensing 
(Murari, Rege, Paul, and Thakor, 2002) 

C
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VLSI potentiostat array for 
distributed electrochemical sensing 

(Murari, Stanacevic, 
Cauwenberghs, and Thakor, 2004) 
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Integrated Microfluidics Electrochemical Sensing 
 Naware, Rege, Genov, Stanacevic, Cauwenberghs and Thakor (ISCAS 2004) 

In vitro  nitric oxide (NO) sensing 
–! emulation of the shear stress regulated NO release pathway observed in 

endothelial cells 
–! current observed by multi-channel VLSI potentiostat 

PDMS 
microfluidics 
channel 
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Sensor Interface Conditioning Telemetry Chip 
Sauer, Stanacevic, Cauwenberghs, and Thakor (2005) 

Regulation 

Modulation Data  
Encoding 

Clock  
Extraction CLK 

VDD 

GND 

Data 

Data 

Power 

Data  
Receiver 

Rectification Power  
Transmitter 

Potentiostat 

Telemetry 

Inductor Coil 

Electrodes 

SoS 
released 
probe body 

Implantable probe with electrochemical 
sensors, VLSI potentiostat and power 
harvesting telemetry chip. 

Power delivery and data transmission 
over the same inductive link 

Telemetry chip (1.5mm X 1.5mm) 
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Cortical Surface Microvascular and Functional Imaging 
 with K. Murari, N. Thakor, J. Driscoll, D. Kleinfeld and T. Sejnowski 

Laser source 

Sample 

Speckle backscatter 

Laser speckle functional imaging of 
microvascular neural activity on 
cortical surface, through thinned 
skull. 
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Laser speckle sub-wavelength 
imaging for non-invasive target/

sample surface reconstruction and 
identification 

Two-photon imaging 
of blood flow in 
cortical surface 

microvessels 
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180 "m 

Minute 0 Minute 12 Minute 30 Minute 60 

CMOS Imaging in Awake Behaving Rats 
Murari, Etienne-Cummings, Cauwenberghs, and Thakor (2010) 

–! First simultaneous behavioral and cortical imaging from 
untethered, freely-moving rats. 
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Integrated Systems Neuroengineering 
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